Picture of  Patrick van der Smagt

Patrick van der Smagt

current: Head of AI Research, data lab, VW Group

Previous: Director of BRML labs
fortiss, An-Institut der Technischen Universität München
Professor for Biomimetic Robotics and Machine Learning, TUM

Chairman of Assistenzrobotik e.V.
addressGermany
emailsmagtbrmlorg

In heading a research lab focussing on machine learning and its application in robotics, biomimetics and sensory data processing, my goal is to develop the techniques to model and use (human) movement.

The slides of my Keynote on end-to-end learning at the 2015 IROS conference are available here.

Visit my blog.

awards

Best Paper Award, Int Conf on Neural Information Processing (ICONIP 2014)
King-Sun Fu Best 2013 Transactions on Robotics Paper Award (2014)
Harvard Medical School/MGH Martin Research Prize (2013)
Erwin Schrödinger Award, Helmholtz Gesellschaft (2012)
SfN BCI Award Finalist (2012)
TUM Leonardo da Vinci Award (2008)
IEEE Best Paper Awards
Beckmann Institute Fellowship (1995)
NACEE Fellowship

in the press

various sources, e.g. NY Times, May 16, 2012: on a brain-controlled robotics experiment
Bayerische Rundfunk, May, 2012: "Wenn Rechner immer intelligenter werden", Radio Wissen
n-tv, June 10, 2010: EMG-controlled robotics
pinc, May 18, 2009, "biorobotics"
Het Financieele Dagblad, May, 2009
Discovery Channel, April 2009: "Future Homes"
3Sat, April 22, 2007: "Z wie Zukunft"
RTLII, March, 2007: "Welt der Wunder"
Pro7, Nov. 5, 2006: "Wunderwelt Wissen"
Abendzeitung, Oct. 28, 2006: Bestnoten für Forscher und Unternehmen
ZDF: Heute Journal, Sep. 15, 2006: Interview
ORF: "Newton" Science report, April 30, 2006: report on advanced prostheses
Süddeutsche Zeitung, Mar. 03, 2006: "Künstliche Hand am Computer entwickelt"
Süddeutsche Zeitung, Jan. 26, 2006: "Direkter Draht zum Hirn"

We were and are funded by various sources, including:
DFG project "SPP autonomous learning" (2012-2015)
NEUROBOTICS (EC project, 2005-2009)
NINAPRO (Swiss project, 2010-2013)
SENSOPAC (EC project, 2006-2010)
STIFF (EC project, 2009-2011)
THE (EC project, 2010-2014)
VIACTORS (EC project, 2009-2012)

on publishing

In June 2012 I resigned as editor of Neural Networks (Elsevier). Having worked with Neural Networks for almost 20 years, I have come to realise that the publication model propagated by behind-paywall publishers no longer combines with my own views of publication DOs and DONTs.  In particular, I have decided to move away from classical publication methods towards open access publishing, now that such alternatives are maturing.

After so many years of research and publishing, it is clear that only a peer-to-peer (double-open) review system with open access to the publications can be fair and unbiased.

I am currently still editor of Biological Cybernetics, as the open access model is being supported by Springer. However, also that large publishing house will have to rethink their approach to scientific publication before long.

Reviewing is good.  But open publication is an alternative.  My blog is an attempt to solve, for my own benefit, this publication issue.




[39]
Title: Analysis and control of a rubbertuator arm
Written by: Smagt P van der, Groen F, Schulten K
in: Biological Cybernetics 1996
Volume: 75 Number: 5
on pages: 433--440
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI:
URL: http://www.robotic.dlr.de/fileadmin/robotic/smagt/publications/SmaGroSch1996.pdf
ARXIVID:
PMID:

www bibtex

Note:

Abstract: The control of light-weight compliant robot arms is cumbersome due to the fact that their Coriolis forces are large, and the forces exerted by the relatively weak actuators may change in time due to external (e.g., temperature) influences. We describe and analyse the behaviour of a light-weight robot arm, the SoftArm robot. It is found that the hysteretic force-position relationship of the arm can be explained from its structure. This knowledge is used in the construction of a neural-network based controller. Experiments show that the network is able to accurately control the robot arm after a training session of only a few minutes.